Data Wrangling with R and Python

The purpose of this document is to illustrate common data wrangling commands with R and Python. These examples use data from the lterdatasampler package.

Basics

The and_vertebrates dataset includes trout and salamander observations from Mack Creek which is part of the Andrews Forest LTER.

library(tidyverse)
library(lterdatasampler)

trout_salamander_R <- and_vertebrates
import pandas as pd

trout_salamander_py = pd.read_csv('data/and_vertebrates.csv')

Head and Tail

Head returns the first few rows of the data frame and tail returns the last rows. The integer in the examples below is optional and used to specify the number of rows returned.

head(trout_salamander_R, 5) # include an integrer is you want to specify the number of rows returned
# A tibble: 5 × 16
   year sitecode section reach  pass unitnum unittype vert_index pitnumber
  <dbl> <chr>    <chr>   <chr> <dbl>   <dbl> <chr>         <dbl>     <dbl>
1  1987 MACKCC-L CC      L         1       1 R                 1        NA
2  1987 MACKCC-L CC      L         1       1 R                 2        NA
3  1987 MACKCC-L CC      L         1       1 R                 3        NA
4  1987 MACKCC-L CC      L         1       1 R                 4        NA
5  1987 MACKCC-L CC      L         1       1 R                 5        NA
# … with 7 more variables: species <chr>, length_1_mm <dbl>, length_2_mm <dbl>,
#   weight_g <dbl>, clip <chr>, sampledate <date>, notes <chr>
tail(trout_salamander_R)
# A tibble: 6 × 16
   year sitecode section reach  pass unitnum unittype vert_index pitnumber
  <dbl> <chr>    <chr>   <chr> <dbl>   <dbl> <chr>         <dbl>     <dbl>
1  2019 MACKOG-U OG      U         2      16 C                21        NA
2  2019 MACKOG-U OG      U         2      16 C                22        NA
3  2019 MACKOG-U OG      U         2      16 C                23   1043503
4  2019 MACKOG-U OG      U         2      16 C                24   1043547
5  2019 MACKOG-U OG      U         2      16 C                25   1043583
6  2019 MACKOG-U OG      U         2      16 C                26   1043500
# … with 7 more variables: species <chr>, length_1_mm <dbl>, length_2_mm <dbl>,
#   weight_g <dbl>, clip <chr>, sampledate <date>, notes <chr>
trout_salamander_py.head(5) # include an integrer is you want to specify the number of rows returned
   year  sitecode section reach  ...  weight_g  clip  sampledate  notes
0  1987  MACKCC-L      CC     L  ...      1.75  NONE  1987-10-07    NaN
1  1987  MACKCC-L      CC     L  ...      1.95  NONE  1987-10-07    NaN
2  1987  MACKCC-L      CC     L  ...      5.60  NONE  1987-10-07    NaN
3  1987  MACKCC-L      CC     L  ...      2.15  NONE  1987-10-07    NaN
4  1987  MACKCC-L      CC     L  ...      6.90  NONE  1987-10-07    NaN

[5 rows x 16 columns]
trout_salamander_py.tail()
       year  sitecode section reach  ...  weight_g  clip  sampledate        notes
32204  2019  MACKOG-U      OG     U  ...       7.9  NONE  2019-09-05          NaN
32205  2019  MACKOG-U      OG     U  ...       8.7  NONE  2019-09-05          NaN
32206  2019  MACKOG-U      OG     U  ...       9.6  NONE  2019-09-05          NaN
32207  2019  MACKOG-U      OG     U  ...      14.3  NONE  2019-09-05          NaN
32208  2019  MACKOG-U      OG     U  ...      11.6  NONE  2019-09-05  Terrestrial

[5 rows x 16 columns]

Class / Type

class(trout_salamander_R)
[1] "tbl_df"     "tbl"        "data.frame"
print(type(trout_salamander_py))
<class 'pandas.core.frame.DataFrame'>

Shape

Here R and Python both tell us that the dataframe has 32,209 rows and 16 columns.

Note

How to format inline code to include a comma for the thousands separator.

r format(round(trout_salamander_nrow), big.mark=‘,’)

dim(trout_salamander_R) # returns the number of rows and columns in a data frame
[1] 32209    16
nrow(trout_salamander_R)
[1] 32209
ncol(trout_salamander_R)
[1] 16
trout_salamander_py.shape
(32209, 16)
trout_salamander_py.shape[0] # number of rows
32209
trout_salamander_py.shape[1] # number of columns
16

Summary / Describe

summary(trout_salamander_R)
      year        sitecode           section             reach          
 Min.   :1987   Length:32209       Length:32209       Length:32209      
 1st Qu.:1998   Class :character   Class :character   Class :character  
 Median :2006   Mode  :character   Mode  :character   Mode  :character  
 Mean   :2005                                                           
 3rd Qu.:2012                                                           
 Max.   :2019                                                           
                                                                        
      pass          unitnum         unittype           vert_index    
 Min.   :1.000   Min.   : 1.000   Length:32209       Min.   :  1.00  
 1st Qu.:1.000   1st Qu.: 3.000   Class :character   1st Qu.:  5.00  
 Median :1.000   Median : 7.000   Mode  :character   Median : 13.00  
 Mean   :1.224   Mean   : 7.696                      Mean   : 20.17  
 3rd Qu.:1.000   3rd Qu.:11.000                      3rd Qu.: 27.00  
 Max.   :2.000   Max.   :20.000                      Max.   :147.00  
                                                                     
   pitnumber          species           length_1_mm      length_2_mm   
 Min.   :   62048   Length:32209       Min.   : 19.00   Min.   : 28.0  
 1st Qu.:13713632   Class :character   1st Qu.: 47.00   1st Qu.: 77.0  
 Median :18570447   Mode  :character   Median : 63.00   Median : 98.0  
 Mean   :16286432                      Mean   : 73.83   Mean   :100.5  
 3rd Qu.:19132429                      3rd Qu.: 97.00   3rd Qu.:119.0  
 Max.   :28180046                      Max.   :253.00   Max.   :284.0  
 NA's   :26574                         NA's   :17       NA's   :19649  
    weight_g           clip             sampledate            notes          
 Min.   :  0.090   Length:32209       Min.   :1987-10-06   Length:32209      
 1st Qu.:  1.510   Class :character   1st Qu.:1998-09-04   Class :character  
 Median :  6.050   Mode  :character   Median :2006-09-06   Mode  :character  
 Mean   :  8.903                      Mean   :2005-08-05                     
 3rd Qu.: 11.660                      3rd Qu.:2012-09-05                     
 Max.   :134.590                      Max.   :2019-09-05                     
 NA's   :13268                                                               
trout_salamander_py.describe()
               year          pass  ...   length_2_mm      weight_g
count  32209.000000  32209.000000  ...  12560.000000  18941.000000
mean    2004.917601      1.223664  ...    100.485191      8.902859
std        8.572474      0.416706  ...     34.736955     10.676276
min     1987.000000      1.000000  ...     28.000000      0.090000
25%     1998.000000      1.000000  ...     77.000000      1.510000
50%     2006.000000      1.000000  ...     98.000000      6.050000
75%     2012.000000      1.000000  ...    119.000000     11.660000
max     2019.000000      2.000000  ...    284.000000    134.590000

[8 rows x 8 columns]
trout_salamander_py.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32209 entries, 0 to 32208
Data columns (total 16 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   year         32209 non-null  int64  
 1   sitecode     32209 non-null  object 
 2   section      32209 non-null  object 
 3   reach        32209 non-null  object 
 4   pass         32209 non-null  int64  
 5   unitnum      32209 non-null  float64
 6   unittype     31599 non-null  object 
 7   vert_index   32209 non-null  int64  
 8   pitnumber    5635 non-null   float64
 9   species      32206 non-null  object 
 10  length_1_mm  32192 non-null  float64
 11  length_2_mm  12560 non-null  float64
 12  weight_g     18941 non-null  float64
 13  clip         32209 non-null  object 
 14  sampledate   32209 non-null  object 
 15  notes        3174 non-null   object 
dtypes: float64(5), int64(3), object(8)
memory usage: 3.9+ MB

Variable Names

names(trout_salamander_R) # returns column names of a data frame
 [1] "year"        "sitecode"    "section"     "reach"       "pass"       
 [6] "unitnum"     "unittype"    "vert_index"  "pitnumber"   "species"    
[11] "length_1_mm" "length_2_mm" "weight_g"    "clip"        "sampledate" 
[16] "notes"      
trout_salamander_py.columns
Index(['year', 'sitecode', 'section', 'reach', 'pass', 'unitnum', 'unittype',
       'vert_index', 'pitnumber', 'species', 'length_1_mm', 'length_2_mm',
       'weight_g', 'clip', 'sampledate', 'notes'],
      dtype='object')

Unique

Get the unique values from a specified column in a dataframe

unique(trout_salamander_R$species)
[1] "Cutthroat trout"            NA                          
[3] "Coastal giant salamander"   "Cascade torrent salamander"
trout_salamander_py.species.unique()
array(['Cutthroat trout', nan, 'Coastal giant salamander',
       'Cascade torrent salamander'], dtype=object)

Selecting Columns

Subset a datafame based on columns of interst

trout_salamander_R <- trout_salamander_R %>% 
  select(year, sitecode, species, length_1_mm, weight_g)
trout_salamander_R
# A tibble: 32,209 × 5
    year sitecode species         length_1_mm weight_g
   <dbl> <chr>    <chr>                 <dbl>    <dbl>
 1  1987 MACKCC-L Cutthroat trout          58     1.75
 2  1987 MACKCC-L Cutthroat trout          61     1.95
 3  1987 MACKCC-L Cutthroat trout          89     5.6 
 4  1987 MACKCC-L Cutthroat trout          58     2.15
 5  1987 MACKCC-L Cutthroat trout          93     6.9 
 6  1987 MACKCC-L Cutthroat trout          86     5.9 
 7  1987 MACKCC-L Cutthroat trout         107    10.5 
 8  1987 MACKCC-L Cutthroat trout         131    20.6 
 9  1987 MACKCC-L Cutthroat trout         103     9.55
10  1987 MACKCC-L Cutthroat trout         117    13   
# … with 32,199 more rows
trout_salamander_py = trout_salamander_py[['year', 'sitecode', 'species', 'length_1_mm', 'weight_g']]
trout_salamander_py
       year  sitecode                   species  length_1_mm  weight_g
0      1987  MACKCC-L           Cutthroat trout         58.0      1.75
1      1987  MACKCC-L           Cutthroat trout         61.0      1.95
2      1987  MACKCC-L           Cutthroat trout         89.0      5.60
3      1987  MACKCC-L           Cutthroat trout         58.0      2.15
4      1987  MACKCC-L           Cutthroat trout         93.0      6.90
...     ...       ...                       ...          ...       ...
32204  2019  MACKOG-U  Coastal giant salamander         58.0      7.90
32205  2019  MACKOG-U  Coastal giant salamander         65.0      8.70
32206  2019  MACKOG-U  Coastal giant salamander         67.0      9.60
32207  2019  MACKOG-U  Coastal giant salamander         74.0     14.30
32208  2019  MACKOG-U  Coastal giant salamander         73.0     11.60

[32209 rows x 5 columns]

or…

cols_to_subset = ['year', 'sitecode', 'species', 'length_1_mm', 'weight_g']
trout_salamander_py[cols_to_subset]
       year  sitecode                   species  length_1_mm  weight_g
0      1987  MACKCC-L           Cutthroat trout         58.0      1.75
1      1987  MACKCC-L           Cutthroat trout         61.0      1.95
2      1987  MACKCC-L           Cutthroat trout         89.0      5.60
3      1987  MACKCC-L           Cutthroat trout         58.0      2.15
4      1987  MACKCC-L           Cutthroat trout         93.0      6.90
...     ...       ...                       ...          ...       ...
32204  2019  MACKOG-U  Coastal giant salamander         58.0      7.90
32205  2019  MACKOG-U  Coastal giant salamander         65.0      8.70
32206  2019  MACKOG-U  Coastal giant salamander         67.0      9.60
32207  2019  MACKOG-U  Coastal giant salamander         74.0     14.30
32208  2019  MACKOG-U  Coastal giant salamander         73.0     11.60

[32209 rows x 5 columns]

New Columns

Convert the length variable from milimeters to inches and store these values in a new column

trout_salamander_R <- trout_salamander_R %>% 
  mutate(length_1_in = length_1_mm / 25.4)
trout_salamander_R
# A tibble: 32,209 × 6
    year sitecode species         length_1_mm weight_g length_1_in
   <dbl> <chr>    <chr>                 <dbl>    <dbl>       <dbl>
 1  1987 MACKCC-L Cutthroat trout          58     1.75        2.28
 2  1987 MACKCC-L Cutthroat trout          61     1.95        2.40
 3  1987 MACKCC-L Cutthroat trout          89     5.6         3.50
 4  1987 MACKCC-L Cutthroat trout          58     2.15        2.28
 5  1987 MACKCC-L Cutthroat trout          93     6.9         3.66
 6  1987 MACKCC-L Cutthroat trout          86     5.9         3.39
 7  1987 MACKCC-L Cutthroat trout         107    10.5         4.21
 8  1987 MACKCC-L Cutthroat trout         131    20.6         5.16
 9  1987 MACKCC-L Cutthroat trout         103     9.55        4.06
10  1987 MACKCC-L Cutthroat trout         117    13           4.61
# … with 32,199 more rows
trout_salamander_py['length_1_in'] = trout_salamander_py['length_1_mm'] / 25.4
trout_salamander_py
       year  sitecode  ... weight_g  length_1_in
0      1987  MACKCC-L  ...     1.75     2.283465
1      1987  MACKCC-L  ...     1.95     2.401575
2      1987  MACKCC-L  ...     5.60     3.503937
3      1987  MACKCC-L  ...     2.15     2.283465
4      1987  MACKCC-L  ...     6.90     3.661417
...     ...       ...  ...      ...          ...
32204  2019  MACKOG-U  ...     7.90     2.283465
32205  2019  MACKOG-U  ...     8.70     2.559055
32206  2019  MACKOG-U  ...     9.60     2.637795
32207  2019  MACKOG-U  ...    14.30     2.913386
32208  2019  MACKOG-U  ...    11.60     2.874016

[32209 rows x 6 columns]

Missing Values

Get the number of missing values for all variables in the dataframe

colSums(is.na(trout_salamander_R))
       year    sitecode     species length_1_mm    weight_g length_1_in 
          0           0           3          17       13268          17 

Get the number of NAs for only variables with missing values

which(colSums(is.na(trout_salamander_R))>0)
    species length_1_mm    weight_g length_1_in 
          3           4           5           6 

Get the names of variables with missing values

names(which(colSums(is.na(trout_salamander_R))>0))
[1] "species"     "length_1_mm" "weight_g"    "length_1_in"

Show variables with missing values on a bar chart

missing_values_R <- data.frame(colSums(is.na(trout_salamander_R))) %>% 
  rownames_to_column("variable")

names(missing_values_R) <- c(
  "variable",
  "num_missing_values"
  )

ggplot(data = missing_values_R, aes(x = variable, y = num_missing_values)) +
  geom_col()

Drop missing values

trout_salamander_R <- trout_salamander_R %>% 
  drop_na(length_1_mm, weight_g)
  # if columns aren't specified, then all variables are selected
  # drop_na()

Identify which columns in the dataframe have missings values

trout_salamander_py.isna().any()
year           False
sitecode       False
species         True
length_1_mm     True
weight_g        True
length_1_in     True
dtype: bool

Get the number of NaNs for all variables in the dataframe

trout_salamander_py.isna().sum()
year               0
sitecode           0
species            3
length_1_mm       17
weight_g       13268
length_1_in       17
dtype: int64

Show variables with missing values on a bar chart

import matplotlib.pyplot as plt

trout_salamander_py.isna().sum().plot(kind='bar', rot=0)
plt.show()

Drop missing values

trout_salamander_py = trout_salamander_py.dropna(subset=['length_1_mm', 'weight_g'])

# if subset variables aren't specified, rows with any NaN value will be dropped
# trout_salamander_py = trout_salamander_py.dropna()

Sorting

Order rows in a dataframe based on values in a specified column. Default is ascending order.

trout_salamander_R %>% 
  arrange(length_1_mm)
# A tibble: 18,930 × 6
    year sitecode species                  length_1_mm weight_g length_1_in
   <dbl> <chr>    <chr>                          <dbl>    <dbl>       <dbl>
 1  1995 MACKOG-L Coastal giant salamander          20     0.6        0.787
 2  2009 MACKOG-L Coastal giant salamander          20     0.35       0.787
 3  2010 MACKCC-U Coastal giant salamander          20     0.49       0.787
 4  1994 MACKCC-L Coastal giant salamander          21     0.6        0.827
 5  1994 MACKOG-L Coastal giant salamander          21     0.4        0.827
 6  2009 MACKOG-L Coastal giant salamander          21     0.36       0.827
 7  2009 MACKOG-L Coastal giant salamander          21     0.36       0.827
 8  2009 MACKOG-L Coastal giant salamander          21     0.33       0.827
 9  2009 MACKOG-L Coastal giant salamander          21     0.39       0.827
10  2009 MACKOG-L Coastal giant salamander          21     0.31       0.827
# … with 18,920 more rows
trout_salamander_py.sort_values("length_1_mm")
       year  sitecode  ... weight_g  length_1_in
21639  2010  MACKCC-U  ...     0.49     0.787402
5141   1995  MACKOG-L  ...     0.60     0.787402
20497  2009  MACKOG-L  ...     0.35     0.787402
23424  2011  MACKOG-M  ...     0.37     0.826772
4499   1994  MACKOG-L  ...     0.40     0.826772
...     ...       ...  ...      ...          ...
1983   1991  MACKCC-M  ...    66.75     7.677165
25311  2013  MACKCC-M  ...    72.00     7.716535
3859   1994  MACKCC-L  ...    66.74     7.716535
19882  2009  MACKCC-M  ...    67.54     7.755906
18450  2008  MACKCC-L  ...    36.40     9.960630

[18930 rows x 6 columns]

Sort values by descending order

trout_salamander_R %>% 
  arrange(desc(length_1_mm))
# A tibble: 18,930 × 6
    year sitecode species         length_1_mm weight_g length_1_in
   <dbl> <chr>    <chr>                 <dbl>    <dbl>       <dbl>
 1  2008 MACKCC-L Cutthroat trout         253     36.4        9.96
 2  2009 MACKCC-M Cutthroat trout         197     67.5        7.76
 3  1994 MACKCC-L Cutthroat trout         196     66.7        7.72
 4  2013 MACKCC-M Cutthroat trout         196     72          7.72
 5  1991 MACKCC-M Cutthroat trout         195     66.8        7.68
 6  2019 MACKCC-M Cutthroat trout         195     71.6        7.68
 7  1992 MACKCC-M Cutthroat trout         194     66.9        7.64
 8  2009 MACKCC-L Cutthroat trout         194     67.0        7.64
 9  1992 MACKOG-M Cutthroat trout         193     61.1        7.60
10  1992 MACKCC-L Cutthroat trout         192     59.2        7.56
# … with 18,920 more rows
trout_salamander_py.sort_values("length_1_mm", ascending=False)
       year  sitecode  ... weight_g  length_1_in
18450  2008  MACKCC-L  ...    36.40     9.960630
19882  2009  MACKCC-M  ...    67.54     7.755906
25311  2013  MACKCC-M  ...    72.00     7.716535
3859   1994  MACKCC-L  ...    66.74     7.716535
1983   1991  MACKCC-M  ...    66.75     7.677165
...     ...       ...  ...      ...          ...
23272  2011  MACKOG-M  ...     0.35     0.826772
23424  2011  MACKOG-M  ...     0.37     0.826772
5141   1995  MACKOG-L  ...     0.60     0.787402
20497  2009  MACKOG-L  ...     0.35     0.787402
21639  2010  MACKCC-U  ...     0.49     0.787402

[18930 rows x 6 columns]

Sort values by multiple variables

trout_salamander_R %>% 
  arrange(length_1_mm, weight_g, year)
# A tibble: 18,930 × 6
    year sitecode species                  length_1_mm weight_g length_1_in
   <dbl> <chr>    <chr>                          <dbl>    <dbl>       <dbl>
 1  2009 MACKOG-L Coastal giant salamander          20     0.35       0.787
 2  2010 MACKCC-U Coastal giant salamander          20     0.49       0.787
 3  1995 MACKOG-L Coastal giant salamander          20     0.6        0.787
 4  2012 MACKOG-U Coastal giant salamander          21     0.3        0.827
 5  2009 MACKOG-L Coastal giant salamander          21     0.31       0.827
 6  2009 MACKOG-L Coastal giant salamander          21     0.33       0.827
 7  2011 MACKOG-M Coastal giant salamander          21     0.35       0.827
 8  2009 MACKOG-L Coastal giant salamander          21     0.36       0.827
 9  2009 MACKOG-L Coastal giant salamander          21     0.36       0.827
10  2011 MACKOG-M Coastal giant salamander          21     0.37       0.827
# … with 18,920 more rows
trout_salamander_py.sort_values(['length_1_mm', 'weight_g', 'year'])
       year  sitecode  ... weight_g  length_1_in
20497  2009  MACKOG-L  ...     0.35     0.787402
21639  2010  MACKCC-U  ...     0.49     0.787402
5141   1995  MACKOG-L  ...     0.60     0.787402
24854  2012  MACKOG-U  ...     0.30     0.826772
20579  2009  MACKOG-L  ...     0.31     0.826772
...     ...       ...  ...      ...          ...
31590  2019  MACKCC-M  ...    71.60     7.677165
3859   1994  MACKCC-L  ...    66.74     7.716535
25311  2013  MACKCC-M  ...    72.00     7.716535
19882  2009  MACKCC-M  ...    67.54     7.755906
18450  2008  MACKCC-L  ...    36.40     9.960630

[18930 rows x 6 columns]

Filtering

Create datasets of all cutthroat trout

trout_R <- trout_salamander_R %>% 
  filter(species == 'Cutthroat trout')
trout_py = trout_salamander_py[ (trout_salamander_py['species'] == 'Cutthroat trout') ]

Filter data based on values and logical arguments. This example filters for cutthroat trout that are longer than 86 mm.

large_trout_R <- trout_salamander_R %>% 
  filter(species == 'Cutthroat trout') %>% 
  filter(length_1_mm > 86)
large_trout_R
# A tibble: 6,101 × 6
    year sitecode species         length_1_mm weight_g length_1_in
   <dbl> <chr>    <chr>                 <dbl>    <dbl>       <dbl>
 1  1987 MACKCC-L Cutthroat trout          89     5.6         3.50
 2  1987 MACKCC-L Cutthroat trout          93     6.9         3.66
 3  1987 MACKCC-L Cutthroat trout         107    10.5         4.21
 4  1987 MACKCC-L Cutthroat trout         131    20.6         5.16
 5  1987 MACKCC-L Cutthroat trout         103     9.55        4.06
 6  1987 MACKCC-L Cutthroat trout         117    13           4.61
 7  1987 MACKCC-L Cutthroat trout         100     8.25        3.94
 8  1987 MACKCC-L Cutthroat trout         127    17.7         5   
 9  1987 MACKCC-L Cutthroat trout          99     8.15        3.90
10  1987 MACKCC-L Cutthroat trout         111    11.2         4.37
# … with 6,091 more rows
num_large_trout <- nrow(large_trout_R)
trout_salamander_py[ (trout_salamander_py['species'] == 'Cutthroat trout') & (trout_salamander_py['length_1_mm'] > 86) ]
       year  sitecode          species  length_1_mm  weight_g  length_1_in
2      1987  MACKCC-L  Cutthroat trout         89.0      5.60     3.503937
4      1987  MACKCC-L  Cutthroat trout         93.0      6.90     3.661417
6      1987  MACKCC-L  Cutthroat trout        107.0     10.50     4.212598
7      1987  MACKCC-L  Cutthroat trout        131.0     20.60     5.157480
8      1987  MACKCC-L  Cutthroat trout        103.0      9.55     4.055118
...     ...       ...              ...          ...       ...          ...
32172  2019  MACKOG-U  Cutthroat trout        145.0     31.80     5.708661
32179  2019  MACKOG-U  Cutthroat trout        142.0     29.50     5.590551
32180  2019  MACKOG-U  Cutthroat trout        142.0     28.30     5.590551
32186  2019  MACKOG-U  Cutthroat trout        118.0     19.80     4.645669
32187  2019  MACKOG-U  Cutthroat trout         89.0      7.40     3.503937

[6101 rows x 6 columns]

There are 6,101 cutthroat trout longer than 86 mm in this dataset.

Summary Statistics

Note

Even though missing values have been removed in previous steps, the code to exclude NA / NaN values from summary statistics is included here for reference.

Mean

Mean of specified column

mean(trout_R$weight_g, na.rm = TRUE)
[1] 8.843582

Mean of multiple specified columns

# calculate statistic on multiple columns
trout_R %>% 
  summarise_at(vars('length_1_mm', 'weight_g'), mean, na.rm = TRUE)
# A tibble: 1 × 2
  length_1_mm weight_g
        <dbl>    <dbl>
1        83.0     8.84

Mean of all numeric columns

# calculate statistic on all numeric columns
trout_R %>% 
  summarise(across(where(is.numeric), mean, na.rm = TRUE))
# A tibble: 1 × 4
   year length_1_mm weight_g length_1_in
  <dbl>       <dbl>    <dbl>       <dbl>
1 2005.        83.0     8.84        3.27

Median

median(trout_R$weight_g, na.rm = TRUE)
[1] 6.15

Minimum

min(trout_R$weight_g, na.rm = TRUE)
[1] 0.09

Maximum

max(trout_R$weight_g, na.rm = TRUE)
[1] 104

Use var() to calculate the variance of a variable.

Use sd() to calculate the standard deviation of a variable.

Mean

Mean of specified column

trout_py['weight_g'].mean()
8.843581639135959

Mean of multiple specified columns

# calcuate statistic on multiple columns
trout_py[['length_1_mm', 'weight_g']].mean()
length_1_mm    83.029066
weight_g        8.843582
dtype: float64

Mean of all numeric columns

# calculate statistic on all numeric columns
trout_py.mean()
year           2004.953780
length_1_mm      83.029066
weight_g          8.843582
length_1_in       3.268861
dtype: float64

<string>:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError.  Select only valid columns before calling the reduction.

Median

trout_py['weight_g'].median()
6.15

Minimum

trout_py['weight_g'].min()
0.09

Maximum

trout_py['weight_g'].max()
104.0

Use .var() to calculate the variance of a variable.

Use .std() to calculate the standard deviation of a variable.

Grouped Statistics

library(kableExtra)

trout_salamander_R %>% 
  drop_na(length_1_mm, weight_g) %>% 
  # even though missing values have been removed in previous steps, 
  # code to exclude NA values from summary statistics is included here for reference.
  group_by(sitecode, species) %>% 
  summarise(mean_length = mean(length_1_mm),
            min_length = min(length_1_mm),
            max_lenth = max(length_1_mm),
            mean_weight = mean(weight_g),
            min_weight = min(weight_g),
            max_weight = max(weight_g)) %>% 
  kable(digits=2) %>% 
  kable_paper()
sitecode species mean_length min_length max_lenth mean_weight min_weight max_weight
MACKCC-L Cascade torrent salamander 36.80 32 40 1.32 0.80 1.95
MACKCC-L Coastal giant salamander 59.09 21 143 10.11 0.29 90.77
MACKCC-L Cutthroat trout 78.93 24 253 7.73 0.09 66.97
MACKCC-M Coastal giant salamander 58.08 25 137 9.55 0.58 85.60
MACKCC-M Cutthroat trout 93.11 27 197 11.76 0.10 77.78
MACKCC-U Coastal giant salamander 57.79 20 154 9.53 0.42 102.99
MACKCC-U Cutthroat trout 84.36 26 192 9.14 0.10 65.00
MACKOG-L Coastal giant salamander 53.54 20 172 8.56 0.30 134.59
MACKOG-L Cutthroat trout 81.87 25 181 8.50 0.13 63.00
MACKOG-M Cascade torrent salamander 29.00 28 30 0.73 0.65 0.80
MACKOG-M Coastal giant salamander 54.02 21 155 8.27 0.30 131.50
MACKOG-M Cutthroat trout 79.30 23 193 7.86 0.10 101.00
MACKOG-U Cascade torrent salamander 32.50 26 39 0.85 0.50 1.20
MACKOG-U Coastal giant salamander 54.64 21 164 8.20 0.30 134.00
MACKOG-U Cutthroat trout 81.47 25 175 8.29 0.10 104.00
trout_salamander_py.dropna(subset=['length_1_mm', 'weight_g']) \
.groupby(['sitecode', 'species'])[['length_1_mm', 'weight_g']] \
.agg(['mean', 'min', 'max'])
    length_1_mm weight_g
    mean min max mean min max
sitecode species            
MACKCC-L Cascade torrent salamander 36.80 32.00 40.00 1.32 0.80 1.95
Coastal giant salamander 59.09 21.00 143.00 10.11 0.29 90.77
Cutthroat trout 78.93 24.00 253.00 7.73 0.09 66.97
MACKCC-M Coastal giant salamander 58.08 25.00 137.00 9.55 0.58 85.60
Cutthroat trout 93.11 27.00 197.00 11.76 0.10 77.78
MACKCC-U Coastal giant salamander 57.79 20.00 154.00 9.53 0.42 102.99
Cutthroat trout 84.36 26.00 192.00 9.14 0.10 65.00
MACKOG-L Coastal giant salamander 53.54 20.00 172.00 8.56 0.30 134.59
Cutthroat trout 81.87 25.00 181.00 8.50 0.13 63.00
MACKOG-M Cascade torrent salamander 29.00 28.00 30.00 0.73 0.65 0.80
Coastal giant salamander 54.02 21.00 155.00 8.27 0.30 131.50
Cutthroat trout 79.30 23.00 193.00 7.86 0.10 101.00
MACKOG-U Cascade torrent salamander 32.50 26.00 39.00 0.85 0.50 1.20
Coastal giant salamander 54.64 21.00 164.00 8.20 0.30 134.00
Cutthroat trout 81.47 25.00 175.00 8.29 0.10 104.00

Visualizations

Scatter Plot

trout_salamander_R <- trout_salamander_R %>% 
  filter(species %in% c('Cutthroat trout', 'Coastal giant salamander'))

ggplot(data = trout_salamander_R, aes(x = length_1_mm, y = weight_g)) +
  geom_point(aes(color = species), show.legend = TRUE) +
  labs(x = "Length (mm)",
       y = "Weight (g)",
       title = "Length vs. Weight of Cutthroat Trout and Coastal Giant Salamander Length",
       color = "Species")

trout_salamander_py = trout_salamander_py[trout_salamander_py['species'].isin(['Cutthroat trout','Coastal giant salamander'])]

import matplotlib.pyplot as plt

colors = {'Cutthroat trout':'blue', 'Coastal giant salamander':'orange'}
plt.scatter(x=trout_salamander_py.length_1_mm, y=trout_salamander_py.weight_g, 
c= trout_salamander_py.species.apply(lambda x: colors[x]))
plt.xlabel('length (mm)')
plt.ylabel('weight (g)')
plt.show()

Histograms

These histograms show the distribution of coastal giant salamander lenths.

salamander_R <- trout_salamander_R %>% 
  filter(species == 'Coastal giant salamander')

ggplot(data = salamander_R, aes(x = length_1_mm)) +
  geom_histogram(fill = 'blue', bins = 25) +
  labs(x = "lenth (mm)",
       title = 'Distribution of Coastal Giant Salamander Length')

salamander_py = trout_salamander_py[ (trout_salamander_py['species'] == 'Coastal giant salamander') ]
salamander_py['length_1_mm'].hist(bins=25, color='green')
plt.title('Distribution of Coastal Giant Salamander Length')
plt.xlabel('length (mm)')
plt.show()

Bar Plots

These bar plots show the averge salamander weight based on site code.

salamander_avg_weight_by_sitecode_R <- salamander_R %>% 
  group_by(sitecode) %>% 
  summarise(mean_weight = mean(weight_g, na.rm = TRUE))

ggplot(data = salamander_avg_weight_by_sitecode_R, aes(x = sitecode, y = mean_weight)) +
  geom_col(fill = 'darkgreen') +
  labs(y = 'weight (g)',
       title = 'Average Coastal Giant Salamander Weight by Site')

salamander_avg_weight_by_sitecode_py = salamander_py.groupby('sitecode')['weight_g'].mean()

salamander_avg_weight_by_sitecode_py.plot(kind='bar', rot=0)
plt.title('Average Coastal Giant Salamander Weight by Site')
plt.ylabel('weight (g)')
plt.show()

Line Plots

These line plots show average salamander length over time.

salamander_avg_length_by_year_R <- salamander_R %>% 
  group_by(year) %>% 
  summarise(mean_length = mean(length_1_mm, na.rm = TRUE))

ggplot(data = salamander_avg_length_by_year_R, aes(x = year, y = mean_length)) +
  geom_line(color = 'red') +
  labs(x = 'year',
       y = 'length (mm)',
       title = 'Average Coastal Giant Salamander Length by Year')

salamander_avg_lenth_by_year_py = salamander_py.groupby('year')['length_1_mm'].mean()

salamander_avg_lenth_by_year_py.plot(x='year', y='length_1_mm', kind='line')
plt.title('Average Coastal Giant Salamander Length by Year')
plt.ylabel('length (mm)')
plt.show()

Joining /Merging Data

The examples below use the arc_weather and ntl_airtemp datasets from the lterdatasampler package. Both of these datasets include daily meteorological observations. The arc_weather data incldues daily weather data from the Toolik Field Station at Toolik Lake, Alaska. The ntl_airtemp data includes daily average temperature data from Madison, WI. These datasets are used for the examples in this section because they both have a date field in common that can be used for joins.

Looking at the data, we see that the arc_weather dataset begins on 1988-06-01 and ends on 2018-12-31. The ntl_airtemp dataset has a much longer period of record and begins on 1869-01-01 and ends on 2019-12-31. Also, the ntl_airtemp dataset has a column called sampledate that will have to be renamed to match arc_weather's date column so that both datasets have a common field that can be using for joins.

Types of Joins types of joins

arc_weather_R <- arc_weather %>% 
  # adding `arc` suffix for clarity when datasets are joined
  rename(station_arc = station,
         mean_airtemp_arc = mean_airtemp,
         daily_precip_arc = daily_precip,
         mean_windspeed_arc = mean_windspeed)
head(arc_weather_R, 3)
# A tibble: 3 × 5
  date       station_arc      mean_airtemp_arc daily_precip_arc mean_windspeed_…
  <date>     <chr>                       <dbl>            <dbl>            <dbl>
1 1988-06-01 Toolik Field St…              8.4                0               NA
2 1988-06-02 Toolik Field St…              6                  0               NA
3 1988-06-03 Toolik Field St…              5.8                0               NA
ntl_airtemp_R <- ntl_airtemp %>% 
  # renaming so the data fields in both datasets have the same name
  # adding `ntl` suffix for clarity when datasets are joined
  rename(date = sampledate,
         year_ntl = year,
         ave_air_temp_adjusted_ntl = ave_air_temp_adjusted) 
head(ntl_airtemp_R, 3)
# A tibble: 3 × 3
  date       year_ntl ave_air_temp_adjusted_ntl
  <date>        <dbl>                     <dbl>
1 1870-06-05     1870                      20  
2 1870-06-06     1870                      18.3
3 1870-06-07     1870                      17.5

Inner join

inner_join_R <- inner_join(arc_weather_R, ntl_airtemp_R, by = "date")

Full join

full_join_R <- full_join(arc_weather_R, ntl_airtemp_R, by = "date")

Left join

left_join_R <- left_join(arc_weather_R, ntl_airtemp_R, by = "date")

Right join

right_join_R <- right_join(arc_weather_R, ntl_airtemp_R, by = "date")

Anti join

anti_join_R <- anti_join(arc_weather_R, ntl_airtemp_R, by = "date")
arc_weather_py = pd.read_csv('data/arc_weather.csv').rename(columns={"station":"station_arc", "mean_airtemp":"mean_airtemp_arc", "daily_precip":"daily_precip_arc", "mean_windspeed":"mean_windspeed_arc"})
arc_weather_py.head(3)
         date           station_arc  ...  daily_precip_arc  mean_windspeed_arc
0  1988-06-01  Toolik Field Station  ...               0.0                 NaN
1  1988-06-02  Toolik Field Station  ...               0.0                 NaN
2  1988-06-03  Toolik Field Station  ...               0.0                 NaN

[3 rows x 5 columns]
ntl_airtemp_py = pd.read_csv(('data/ntl_airtemp.csv')).rename(columns={"sampledate":"date", "year":"year_ntl", "ave_air_temp_adjusted":"ave_air_temp_adjusted_ntl"})
ntl_airtemp_py.head(3)
         date  year_ntl  ave_air_temp_adjusted_ntl
0  1870-06-05      1870                       20.0
1  1870-06-06      1870                       18.3
2  1870-06-07      1870                       17.5

Inner merge

inner_merge_py = arc_weather_py.merge(ntl_airtemp_py, how='inner', on='date')

Full/Outer merge

full_merge_py = arc_weather_py.merge(ntl_airtemp_py, how='outer', on='date')

Left merge

left_merge_py = arc_weather_py.merge(ntl_airtemp_py, how='left', on='date')

Right merge

right_merge_py = arc_weather_py.merge(ntl_airtemp_py, how='right', on='date')

xxx…add images of each species

xxxxx

Heading

Citation

Horst A, Brun J (2022). lterdatasampler: Educational dataset examples from the Long Term Ecological Research program. R package version 0.1.0, https://github.com/lter/lterdatasampler.